Further reading on intake fractions

From Testiwiki
Jump to: navigation, search
The text on this page is taken from an equivalent page of the IEHIAS-project.

A number of studies have been done using intake fraction. These provide a comprehensive view of how to apply the intake fraction methodology and for which purposes it can be used. The majority of the studies are summarised in the following table with the full references provided at the end of the page.

Sources Pollutant Media Pathway Method Reference
Power plants Primary and secondary PM Air Inhalation CALPUFF dispersion model Levy et al. 2003
Power plants Fine PM, sulfur dioxide, sulfate, nitrate Air Inhalation CALPUFF dispersion model Zhou et al. 2003
Power plants Primary and secondary PM Air Inhalation CALPUFF dispersion model Li et al. 2003
General air, 180 source samplesn SO2, SO42- Air Inhalation CALPUFF dispersion model Hao et al. 2003
Power plants Primary fine PM, SO2, sulfate, nitrate Air Inhalation CALPUFF dispersion model Zhou et al. 2006
Electricity production Primary pollutants (CO, PM2.5) Air Inhalation Gaussian plume dispersion model Heath et al. 2006
Traffic acetaldehyde, PM<subu>2.5</sub> Air Inhalation Gaussian plume dispersion model ---
Dry cleaners Perchloroethylene Air Inhalation Gaussian plume dispersion model Evans et al. 2000
Air emissions (traffic, line and point sources, indoor air) Primary pollutants Air Inhalation Gaussian plume dispersion model, box models Lai et al. 2000
Industry TSP, SO2 Air Inhalation Dispersion model ISTLT3 Wang et al. 2006
Power plants, mobile sources PM2.5, secondary sulfate and nitrate particles Air Inhalation CALPUFF dispersion model and regression Levy et al. 2002
Vehicle (self-pollution) Primary pollutants Air Inhalation Tracer gases (measured concentrations) Marshall and Behrentz 2005
Motor vehicle (outdoor, indoor and in-vehicle) Primary pollutants (CO; Benzene) Air Inhalation Tracer gases (measured concentrations) Marshall et al. 2003
Motor vehicle Primary pollutants Air Inhalation one-compartment steady-state mass-balance model, empirical emission-to-concentration relationship and model results from National-scale air toxics assessment Marshall et al. 2005
Episodic indoor sources (cooking, cleaning, smoking) Acrolein Ethylbenzene o-Cresol Air Inhalation Mathematical models supported by empirical data Nazaroff 2008
Power plants, vehicles, neighbourhood sources, stoves vented indoors and outdoors, ETS and cigarette smoke PM Air Inhalation Mathematical models Smith 1993
Oil refinery Particles, SO2 and benzene Air Inhalation Gaussian-plume model (ISCLT2) Phonboon 1996
Power plants, mobile sources PM2.5, SO2, NOx Air Inhalation CALPUFF Wolff 2000
Mobile sources PM2.5, SO2, NOx Air Inhalation S-R matrix Greco et al. 2007
Smoking indoors Secondhand tobacco smoke (particles, CO, nicotine) Air Inhalation Mathematical simulation model Klepeis and Nazaroff 2006
Power plants S=2, NOx, PM10 Air Inhalation CALMET/CALPUFF Hao et al. 2007
Greenhouse tomatoes Pesticides (Captan) Food Ingestion Mathematical fate-exposure models and empirical measurements Juraske et al. 2007
Indoor sources VOC’s Air Inhalation Mathematical simulation model Ilacqua et al. 2007
Mobile sources PM2.5, ammonium nitrate, ammonium sulfate Air Inhalation Steady-state box model, dynamic box model, regression model, particle composition method, dispersion model Stevens et al. 2007
Power plants PM2.5, NOx, formaldehyde Air Inhalation Gaussian plume modelling with GIS-method Heath and Nazaroff 2007
Traffic CO, PM2.5, NO, NO2 Air Inhalation Operational Street Pollution Model (OSPM) Zhou and Levy 2008
Mobile vehicles Nonreactive pollutants (CO) Air Inhalation Mathematical models supported by monitoring data Luo et al 2010
Cooking PM Air Inhalation Mathematical model with emission measurements Zhang et al. 2010
Fruit and vegetables Pesticides Food Ingestion Mathematical fate modelling Juraske et al. 2009a
General air emissions benzo(a)pyrene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzene, carbon tetrachloride Air, water, sediment, vegation Inhalation, ingestion IMPACT North America model Humbert et al. 2009
Urban winter wood smoke PM2.5, evoglucosan Air Inhalation Spatiotemporal statistical models with empirical data Ries et al. 2009
Airports benzene, 1,3-butadiene, benzo [a]pyrene Air Inhalation AERMOD dispersion model Zhou and Levy 2009
General air emissions PM2.5 Air Inhalation Regional-scale dispersion model SILAM. Tainio et al. 2009
Tomatoes Imidacloprid Food Ingestion Two plant uptake models, with pesticide deposition model and a dynamic root uptake and translocation Juraske et al. 2009b
Traffic (diesel vehicles) EC, PM2.5 Air Inhalation CALINE4 model Wu et al. 2009
Local vehicular traffic Benzene Air Inhalation EXPAND model, mathematical model based on measurement data and one-compartment box model Loh et al. 2009
Motor vehicles NO2, CO Air Inhalation Box model, one compartment model and approximately calculation with IMMPROG2000 gaussian plumemodel. Carella and Mudu 2009
General 308 organic chemicals Air, water, food, soil Inhalation, ingestion CalTOX multimedia model Bennett et al. 2002b
General air emissions PCDD/F Air, water, food, soil Ingestion IMPACT 2002 multimedia model Margni et al. 2004
General PCDD/Fs, PCBs Air, water, food, soil Inhalation, ingestion Empirical model and multimedia model with food-chain exposure model Hirai et al. 2004
General SVOCs (benzo(a)pyrene, fluoranthene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) Air, water, food, soil Ingestion CalTOX multimedia model with Monte-Carlo simulations Lobscheid et al. 2004
General air emissions benzene, carbon tetrachloride, benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo dioxin Air, water, food, soil Inhalation, ingestion Berkeley-Trent (BETR) North American contaminant fate multimedia model MacLeod et al. 2004
General 3393 substances Air, water, food, soil Inhalation, ingestion USES-LCA fate and exposure model Huijbregts et al. 2005a
General 365 substances Air, water, soil Inhalation, ingestion CalTOX and USES-LCA Huijbregts et al. 2005b
General air emissions Arsenic, cadmium, chromium, mercury, nickel, lead Air, water, food Inhalation, ingestion Uniform world model (multimedia) Spadaro and Rabl 2004


  • Bennett, D.H.; Margni, M.D.; McKone, T.E.; Jolliet, O. (2002). Intake fractions for multimedia pollutants: A tool for life cycle analysis and comparative risk assessment. Risk Analysis 22, 905-918.
  • Carella, B.; Mudu, P. (2009). Exposure to Air Pollution: An Intake Fraction Application in Turin Province, Archives of Environmental & Occupational Health 64, 156-163.
  • Evans, J.S.; Thompson, K.M.; Hattis, D. (2000). Exposure efficiency: Concept and application to perchloroethylene exposure from dry cleaners, Journal of Air & Waste Management Association 50, 1700-1703.
  • Greco, S.L.; Wilson, A.M.; Spengler, J.D.; Levy, J.I. (2007). Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States, Atmospheric Environment 41, 1011-1025.
  • Hao, J.; Wang, L.; Shen, M.; Li, L.; Hu, J. (2007). Air quality impacts of power plant emissions in Beijing, Enivronmental Pollution 147, 401-408.
  • Heath, G.A.; Granvold, P.W.; Hoats, A.S.; Nazaroff, W.W. (2006). Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation, Atmospheric Environment 40, 7164–7177.
  • Heath, G.A.; Nazaroff, W.W. (2007). Intake-to-delivered-energy ratios for central station and distributed electricity generation in California, Atmospheric Environment 41, 9159-9172.
  • Hirai, Y.; Sakai. S.I.; Watanabe, N.; Takatsuki, H. (2004). Congener-specific intake fractions for PCDDs/DFs and Co-PCBs: modeling and validation, Chemosphere 54, 1383–1400.
  • Huijbregts, M.A.J.; Struijs, J.; Goedkoop, M.; Heijungs, R.; Hendriks, A.J.; van de Meent, D. (2005a). Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment, Chemosphere 61, 1495–1504.
  • Huijbregts, M.A.J.; Geelen, L.M.J.; Hertwich, E.G.; McKone, T.E.; van de Meent, D. (2005b). A comparison between the multimedia fate and exposure models CalTOX and uniform system for evaluation of substances adapted for life-cycle assessment based on the population intake fraction of toxic pollutants, Environmental Toxicology and Chemistry 24, 486-493.
  • Humbert, S.; Manneh, R.; Shaked, S.; Wannaz, C.; Horvath, A.; Deschênes, L.; Jolliet, O.; Margni, M. (2009). Assessing regional intake fractions in North America, Science of the Total Environment 407, 4812–4820.
  • Ilacqua, V.; Hänninen, O.; Kuenzli, N.; Jantunen, M. (2007). Intake fraction distributions for indoor VOC sources in five European cities, Indoor Air 17, 372-383.
  • Juraske, R.; Anto´n, A.; Castells, F.; Huijbregts, M.A.J. (2007). Human intake fractions of pesticides via greenhouse tomato consumption: Comparing model estimates with measurements for Captan, Chemosphere 67, 1102-1107.
  • Juraske, R.; Mutel, C.L.; Stoessel, F.; Hellweg, S. (2009a). Life cycle human toxicity assessment of pesticides: Comparing fruit and vegetable diets in Switzerland and the United States, Chemosphere 77, 939-945.
  • Juraske, R.; Castell, F.; Vijay, A.; Mu˜noz, P.; Antón, A. (2009b). Uptake and persistence of pesticides in plants: Measurements and model estimates for imidacloprid after foliar and soil application, Journal of Hazardous Materials 165, 683–689.
  • Klepeis, N.E.; Nazaroff, W.W. (2006). Modeling residential exposure to secondhand tobacco smoke, Atmospheric Environment 40 (2006) 4393–4407.
  • Lai, A.C.K.; Thatcher, T.L.; Nazaroff, W.W. (2000). Inhalation transfer factors for air pollution health risk assessment, Journal of Air & Waste Management Association 50, 1688-1699.
  • Levy, J.I.; Wolff, S.K.; Evans, J.S. (2002). A regression-based approach for estimating primary and secondary particulate matter intake fractions, Risk Analysis 22, 895-904.
  • Levy, J.I.; Wilson, A.M.; Evans, J.S.; Spengler, J.D. (2003). Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia, Eviron. Aci. Technol. 37, 5528-5536.
  • Li, J.; Hao, J.M. (2003). Application of intake fraction to population exposure estimates in Hunan Province of China, Journal of Environmental Science and Health Part A – Toxic/hazardous Substances & Environmental Engineering 38, 1041-1054.
  • Lobscheid, A.B.; Maddalena, R.L.; Mckone, T.E. (2004). Contribution of locally grown foods in cumulative exposure assessments. J. Exposure Anal. Environ. Epidemiol. 14, 60-73.
  • Loh, M.M.; Soares, J.; Karppinen, A.; Kukkonen, J.; Kangas, L.; Riikonen, K.; Kousa, A.; Asikainen, A.; Jantunen, M.J. (2009). Intake fraction distributions for benzene from vehicles in the Helsinki metropolitan area, Atmospheric Environment 43, 301–310.
  • MacLeod, M.; Bennett, D.H.; Perem, M.; Maddalena, R; McKone, T.; Mackay, D. (2004). Dependence of intake fraction on release location in a multimedia framework: A case study of four contaminants in North America, J. Indus. Ecol. 8 (3), 89-102.
  • Margni, M.; Pennington, D.W.; Amman, C.; Jolliet, O. (2004). Evaluating multimedia/multipathway model intake fraction estimates using POP emission and monitoring data, Environmental Pollution 128, 263–277.
  • Marshall, J.D.; Behrentz (2005). Vehicle self-pollution intake fraction: Children’s exposure to school bus emissions, Environ. Sci. Technol. 39, 2559-2563.
  • Marshall, J.D.; Riley, W.J.; McKone, T.E.; Nazaroff, W.W. (2003). Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin, Atmospheric Environment 37, 3455–3468.
  • Marahall, J.D. Teoh, S.K.; Nazaroff, W.W. (2005). Intake fraction of nonreactive vehicle emissions in US urban areas, Atmospheric Environment 39, 1363–1371.
  • Nazaroff, W.W. (2008). Inhalation intake fraction of pollutants from episodic indoor emissions, Building and Environment, Building and Environment 43, 269-277.
  • Nigge, K-M. (2001). Generic spatial classes for human health impacts, part I: Methodology, Internation Journal of Life Cycle Assessment 6, 1-8.
  • Phonboon, K., (1996). Risk Assessment of Environmental Effects in Developing Countries, Doctoral Thesis, Harvard School of Public Health, Boston, Massachussetts
  • Ries, F.J.; Marshall, J.D.; Brauer, M. (2009). Intake Fraction of Urban Wood Smoke, Environ. Sci. Technol. 43, 4701–4706.
  • Smith, K.R. (1993). Fuel combustion, air pollution exposure, and health: The situation in developing countries, Annual reviews of Energy and Environment 18, 529-566.
  • Spadaro, J.V.; Rabl, A. (2004). Pathway Analysis for Population-Total Health Impacts of Toxic Metal Emissions, Risk Analysis 24, 1121-1141.
  • Stevens, G.; de Foy, B.; West, J.J.; Levy, J.I. (2007). Developing intake fraction estimates with limited data: Comparison of methods in Mexico City, Atmospheric Environment 41, 3672-3683.
  • Tainio, M.; Sofiev, M.; Hujo, M.; Tuomisto, J.T.; Loh, M.; Jantunen, M.J.; Karppinen, A.; Kangas, L.; Karvosenoja, N.; Kupiainen, K.; Porvari, P.; Kukkonen, J. (2009). Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions, Atmospheric Environment 43, 3052–3059.
  • Wang, S.; Hao, J.; Ho, M.S.; Li, J.; Lu, Y. (2006). Intake fractions of industrial air pollutants in China: Estimation and application, Science of the Total Environment 354, 127– 141.
  • Wolff, S.K., 2000. Evaluation of fine particle exposures, health risks and control options, Doctoral Thesis, Department of Environmental Health, Harvard School of Public Health
  • Wu, J.; Houston, D.; Lurmann, F.; Ong, P.; Winer, A. (2009). Exposure of PM2.5 and EC from diesel and gasoline vehicles in communities near the Ports of Los Angeles and Long Beach, California, Atmospheric Environment 43, 962–1971.
  • Zhang, Q.; Gangupomu, R.H.; Ramirez, D.; Zhu, Y. (2010). Measurement of Ultrafine Particles and Other Air Pollutants Emitted by Cooking Activities, Int. J. Environ. Res. Public Health 7, 1744-1759
  • Zhou, Y.; Levy, J.I.; Hammitt, J.K.; Evans, J.S. (2003). Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China, Atmospheric Environment 37, 815–826.
  • Zhou, Y.; Levy, J.I.; Evans, J.S.; Hammitt, J.K. (2006). The influence of geographic location on population exposure to emissions from power plants throughout China, Environment International 32, 365 – 373.
  • Zhou, Y.; Levy, J.I. (2008). The impact of urban street canyons on population exposure to traffic-related primary pollutants, Atmospheric Environment 42, 3087-3098.
  • Zhou, Y.; Levy, J.I (2009). Between-airport heterogeneity in air toxics emissions associated with individual cancer risk thresholds and population risks, Environmental Health 8

See also

Integrated Environmental Health Impact Assessment System
IEHIAS is a website developed by two large EU-funded projects Intarese and Heimtsa. The content from the original website was moved to Opasnet.
Topic Pages

Boundaries · Population: age+sex 100m LAU2 Totals Age and gender · ExpoPlatform · Agriculture emissions · Climate · Soil: Degredation · Atlases: Geochemical Urban · SoDa · PVGIS · CORINE 2000 · Biomarkers: AP As BPA BFRs Cd Dioxins DBPs Fluorinated surfactants Pb Organochlorine insecticides OPs Parabens Phthalates PAHs PCBs · Health: Effects Statistics · CARE · IRTAD · Functions: Impact Exposure-response · Monetary values · Morbidity · Mortality: Database

Examples and case studies Defining question: Agriculture Waste Water · Defining stakeholders: Agriculture Waste Water · Engaging stakeholders: Water · Scenarios: Agriculture Crop CAP Crop allocation Energy crop · Scenario examples: Transport Waste SRES-population UVR and Cancer
Models and methods Ind. select · Mindmap · Diagr. tools · Scen. constr. · Focal sum · Land use · Visual. toolbox · SIENA: Simulator Data Description · Mass balance · Matrix · Princ. comp. · ADMS · CAR · CHIMERE · EcoSenseWeb · H2O Quality · EMF loss · Geomorf · UVR models · INDEX · RISK IAQ · CalTOX · PANGEA · dynamiCROP · IndusChemFate · Transport · PBPK Cd · PBTK dioxin · Exp. Response · Impact calc. · Aguila · Protocol elic. · Info value · DST metadata · E & H: Monitoring Frameworks · Integrated monitoring: Concepts Framework Methods Needs
Listings Health impacts of agricultural land use change · Health impacts of regulative policies on use of DBP in consumer products
Guidance System
The concept
Issue framing Formulating scenarios · Scenarios: Prescriptive Descriptive Predictive Probabilistic · Scoping · Building a conceptual model · Causal chain · Other frameworks · Selecting indicators
Design Learning · Accuracy · Complex exposures · Matching exposure and health · Info needs · Vulnerable groups · Values · Variation · Location · Resolution · Zone design · Timeframes · Justice · Screening · Estimation · Elicitation · Delphi · Extrapolation · Transferring results · Temporal extrapolation · Spatial extrapolation · Triangulation · Rapid modelling · Intake fraction · iF reading · Piloting · Example · Piloting data · Protocol development
Execution Causal chain · Contaminant sources · Disaggregation · Contaminant release · Transport and fate · Source attribution · Multimedia models · Exposure · Exposure modelling · Intake fraction · Exposure-to-intake · Internal dose · Exposure-response · Impact analysis · Monetisation · Monetary values · Uncertainty