Difference between revisions of "Benefit-risk assessment of Baltic herring and salmon intake"

From Testiwiki
Jump to: navigation, search
m (Dependencies: links added)
(Health impact model (Monte Carlo))
 
(93 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:Goherr]]  
 
[[Category:Goherr]]  
{{assessment|moderator=Arja|stub=Yes}}
+
{{assessment|moderator=Arja|stub=Yes|status=unfinished}}
  
 
== Scope ==
 
== Scope ==
This assessmnet is part of the WP5 work in Goherr project. Purpose is to evaluate health benefits and risks caused by eating Baltic herring and salmon in four Baltic sea country. This assessment is currently on-going.
+
This assessment is part of the WP5 work in [[Goherr:_Project | Goherr project]]. Purpose is to evaluate health benefits and risks caused of eating Baltic herring and salmon in four Baltic sea countries (Denmark, Estonia, Finland and Sweden). This assessment is currently on-going.
  
 
=== Question ===
 
=== Question ===
What are the population level heatlth benefits and risks of eating Baltic herring and salmon in Finalnd, Estonia, Denmark and Sweden?
+
What are the current population level health benefits and risks of eating Baltic herring and salmon in Finland, Estonia, Denmark and Sweden? How would the health effects change in the future, if consumption of Baltic herring and salmon changes due to actions caused by different management scenarios of Baltic sea fish stocks?
  
 
=== Intended use and users ===
 
=== Intended use and users ===
* Goherr project group
+
Results of this assessment are used to inform policy makers about the health impacts of fish. Further, this assessment will be combined with the results of the other Goherr WPs to produce estimates of future health impacts of Baltic fish related to different policy options. Especially, results of this assessment will be used as input in the decision support model built in Goherr WP6.
* ?
 
  
 
=== Participants ===
 
=== Participants ===
* National istitute for Health and welfare (THL)
+
* National institute for health and welfare (THL)
 
* Goherr project group
 
* Goherr project group
  
 
=== Boundaries ===
 
=== Boundaries ===
* Four baltic sea countries
+
* Four baltic sea countries (Denmark, Estonia, Finland, Sweden)
* Current situation
+
* Current situation (fish use year 2016, pollutant levels in fish year 2010)
* Estimation for future (year 2020?)
+
* Estimation for future (not year specific)
  
 
=== Decisions and scenarios ===
 
=== Decisions and scenarios ===
 +
 +
[[Goherr:_3.2._Online_description_of_the_scenarios_developed,_applicable_in_the_dioxin_model_(Task_5.1)_and_decision_support_model_of_WP6_(Month_16)._Responsible_partner:_UOULU. |Management scenarios developed in Goherr WP3]] frames the following boundaries to the use and consumption of Baltic herring and salmon as human food. Effect of these scenarios to the dioxin levels and the human food use will be evalauted quantitatively and feed into the health benefit-risk model to assess the health effect changes.
 +
 +
* Scenario 1: “Transformation to sustainability”
 +
** Hazardous substances, including dioxins, are gradually flushed out and the dioxin levels in Baltic herring are below or close to the maximum allowable level.
 +
** Fish stocks are allowed to recover to levels, which makes maximum sustainable yield possible and increases the total catches of wild caught fish. The catches of salmon by commercial fisheries has stabilized at low level, while the share of recreational catch increases slightly.
 +
** The use of the Baltic herring catch for food increases. A regional proactive management plan for the use of catch has increased the capacity of the fishing fleets to fish herring for food and through product development and joint marketing, have increased consumer demand for Baltic herring.
 +
* Scenario 2: “Business-as-usual”
 +
** The commercial catches of salmon continue to decrease. The demand for top predatory species, such as salmon and cod remains high, while the demand for herring decreased further as a result of demographic changes.
 +
** Most of the herring catch are used for fish meal and oil production in the region.
 +
** The use of Baltic herring from the southern parts of the Baltic Sea where the dioxin contents are not likely to exceed the maximum allowable level, are prioritised for human consumption. In the absence of the demand in many of the Baltic Sea countries, majority of the herring intended for direct human consumption are exported to Russia.
 +
* Scenario 3: “Inequality”
 +
** The nutrient and dioxins levels continue to decrease slowly.
 +
** The commercial catches of salmon have decreased further as the general attitudes favour recreational fishing, which has also resulted in decreased demand.
 +
** The herring catches have increased slightly, but the availability of herring suitable for human consumption remains low due to both, dioxin levels that remain above the maximum allowable limit in the northern Baltic Sea and the poor capacity to fish for food.
 +
** The use of the catch varies between countries. In Estonia, for example, where the whole catch has been traditionally used for human consumption, there is no significant change in this respect, but in Finland, Sweden and Denmark, herring fishing is predominantly feed directed.
 +
* Scenario 4: “Transformation to protectionism”
 +
** The level of hazardous substances also increases as emission sources are not adequately addressed.
 +
** Commercial salmon fisheries disappears almost completely from the Baltic Sea, although restocking keeps small scale fisheries going.
 +
** Many of the Baltic herring stocks are also fished above the maximum sustainable yield and total catches are declining.
 +
** Owing to the growing dioxin levels detected in herring, majority of the catch is used for aquaculture.
  
 
=== Timing ===
 
=== Timing ===
 
* Model development during 2016 and 2017
 
* Model development during 2016 and 2017
 
* First set of results in March 2017, draft publication in March 2018
 
* First set of results in March 2017, draft publication in March 2018
 +
 
== Answer ==
 
== Answer ==
 
This section will be updated as soon as preliminary results are available
 
This section will be updated as soon as preliminary results are available
Line 35: Line 56:
  
 
[[image:Goherr_WP5_HIA_structure.JPG|thumb|Schematic picture of the health benefit-risk model for Baltic herring and salmon intake.]]
 
[[image:Goherr_WP5_HIA_structure.JPG|thumb|Schematic picture of the health benefit-risk model for Baltic herring and salmon intake.]]
 +
[[File:BRA of Baltic herring and salmon.png|400px|thumb|Detailed modelling diagram of the health benefit-risk model. Green nodes are original data, red nodes are based on scientific literature, and blue nodes are computational nodes. Those with a number are generic nodes designed to be used in several assessments. the number refers to the page identifier in Op_en wiki (this Opasnet wiki).]]
  
 
=== Stakeholders ===
 
=== Stakeholders ===
 +
* Policy makers
 +
** Food safety authorities
 +
** Fisheries management
 +
* Researchers
 +
** Food safety
 +
** Health
 +
* NGO's
 +
** WWF
 +
** Active consumers
 +
** Marine Stewardship Council
 +
* Baltic sea fishers and producers?
  
 
=== Dependencies ===
 
=== Dependencies ===
* [[TEF |Toxic equivalency factor (TEF)]]
+
 
* Consumption of fish
+
'''Calculation of cases of disease
* Pollutant and fatty acid levels
+
* totcases (Op_en2261/totcases on page [[Health impact assessment]]) with dose and RR, automatic intermediate variables. Indices: Age, Gender, Country, Response.
** [[POPs_in_Baltic_herring | Persistent organic pollutant levels in Baltic herring]]
+
** population, case-specific, from main model. Suggested indices: Age, Gender, Country.
** [[POPs_in_Baltic_salmon | Persistent organic pollutant levels in Baltic salmon]]
+
** disincidence,Incidence of the disease of interest. Op_en5917/initiate [[Disease risk]]. Suggested indices: Age, Gender, Country, Response. {{comment|# |Should we use IHME data instead?|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}} {{defend|# |Done|--[[User:Arja|Arja]] ([[User talk:Arja|talk]]) 12:07, 19 May 2017 (UTC)}}
* Risk functions of health effects
+
*** [[Burden_of_disease_in_Finland |Burden of disease as DALY in Finland]] {{attack|# |Inactivate and merge?|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}}
** [[ERF_of_dioxin | Exposure-response fuctions of Dioxins]]
+
** ERF and threshold, exposure-response functions. Op_en2031/initiate [[Exposure-response function]]. Existing indices: Exposure_agent, Response, Exposure, Exposure_unit, ER_function, Scaling. {{defend|# |Done.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 14:22, 19 April 2017 (UTC)}}
** [[ERF_of_omega-3_fatty_acids | Exposure-response functions of fatty acids]]
+
*** [[ERF_of_dioxin | Exposure-response functions of dioxins]]
** [[ERF_of_methylmercury |Exposure-response functions of methylmercury]]
+
*** [[ERF_of_omega-3_fatty_acids | Exposure-response functions of fatty acids]]
* Background health data (incidences and DALY)
+
*** [[ERF_of_methylmercury |Exposure-response functions of methylmercury]]
 +
*** [[ERFs of vitamins]]  
 +
** frexposed, fraction of population that is exposed from [[Goherr: Fish consumption study]]. Suggested indices: Age, Gender, Country.
 +
** exposure, from the main model because has case-specific adjustments. Suggested indices: Age, Gender, Country, Compound.
 +
*** amount, [[Goherr:_Fish_consumption_study | Consumption of fish]]. Existing indices: Gender, Age, Country, Fish.
 +
*** [[EU-kalat]]: concentration, Pollutant and fatty acid concentrations in fish. Suggested indices: Fish_species → Fish, POP → Compound, Catch_square (Catch_site, Catch_location) → Area, Length_mean_mm → Length.
 +
**** [[POPs_in_Baltic_herring | Persistent organic pollutant levels in Baltic herring]] {{attack|# |Page only used to summarise data from [[EU-kalat]].|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 11:40, 19 April 2017 (UTC)}}
 +
**** [[POPs_in_Baltic_salmon | Persistent organic pollutant levels in Baltic salmon]] {{attack|# |Page only used to summarise data from [[EU-kalat]].|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 11:40, 19 April 2017 (UTC)}}
 +
**** [[Concentrations of beneficial nutrients in fish]]. Suggested indices: Fish, Compound. {{comment|# |Good data for Baltic herring, Salmon not taken into account yet|--[[User:Arja|Arja]] ([[User talk:Arja|talk]]) 13:27, 13 March 2017 (UTC)}} {{defend|# |Take data from Fineli.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}} {{comment|# |[[Omega-3 content in salmon]]: update and change the answer to point to the main page.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}}
 +
**** [[Mercury concentrations in fish in Finland]]. Suggested indices: Fish, Location, Size, Year, Compound. {{defend|# |update code by using Bayesian model on Kerty database.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}}
 +
*** [[TEF |Toxic equivalency factor (TEF)]]. Indices: TEFversion, Compound. {{defend|# |Done.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 14:22, 19 April 2017 (UTC)}}
 +
 
 +
'''Calculation of DALYs:
 +
* totcases (see above)
 +
* [[Disability_weights | Disability weights of health effects]]
 +
* [[Duration_of_morbidity | Length of disease]]
 +
 
 +
<t2b name="Background exposure" index="Background,Country,Gender,Exposure_agent" desc="Unit,Description" unit="-">
 +
Yes|FI|Male|Vitamin D|11.7|µg /d|Finriski 12 - 0.3 silakasta
 +
Yes|SWE|Male|Vitamin D|11.7|µg /d|Finriski 12 - 0.3 silakasta
 +
Yes|EST|Male|Vitamin D|11.7|µg /d|Finriski 12 - 0.3 silakasta
 +
Yes|DK|Male|Vitamin D|11.7|µg /d|Finriski 12 - 0.3 silakasta
 +
Yes||Female|Vitamin D|8.5|µg /d|Finriski 8.7 - 0.2 silakasta
 +
Yes||Male|EPA|120|mg /d|Finriski 125 - 4.6 silakasta
 +
Yes||Female|EPA|96|mg /d|Finriski 100 - 3.9 silakasta
 +
Yes||Male|DHA|118|mg /d|Finriski 125 - 6.7 silakasta
 +
Yes||Female|DHA|94|mg /d|Finriski 100 - 5.4 silakasta
 +
Yes|||PCDDF|0|pg /d (TEQ)|
 +
Yes|||PCB|0|pg /d (TEQ)|
 +
Yes|||MeHg|0|µg /d|
 +
Yes|||logTEQ|0|log(pg /g)|
 +
No||||0||
 +
</t2b>
 +
 
 +
<t2b name="Exposure-response functions of interest" index="Exposure_agent,Resp,Response,ER_function,Scaling" obs="Dummy" unit="-">
 +
TEQ|Tooth defect|Yes or no dental defect|ERS|None|1
 +
TEQ|Cancer|Cancer morbidity|CSF|BW|1
 +
TEQ|Dioxin TDI|Dioxin recommendation tolerable daily intake|TDI|BW|1
 +
DHA|Child's IQ|Loss in child's IQ points|ERS|None|1
 +
Omega3|Heart (CHD)|CHD2 mortality|Relative Hill|None|1
 +
Omega3|Stroke|Stroke mortality|Relative Hill|None|1
 +
Vitamin D|Vitamin D intake|Vitamin D recommendation|Step|None|1
 +
MeHg|Child's IQ|Loss in child's IQ points|ERS|BW|1
 +
</t2b>
 +
 
 +
<t2b name="DALYs of responses" index="Resp" obs="DALY" desc="Description" unit="DALY /case">
 +
Heart (CHD)|5 - 15|Assumes DW 1 and D 10 U 50%
 +
Stroke|5 - 15|Assumes DW 1 and D 10 U 50 %
 +
Tooth defect|0 - 0.12|DW 0.001 D 60 U 100 %. Or should we use this: Developmental defect: caries or missing tooth, 0.008 (0.003 - 0.017), Periodontitis weight from IHME. D: 1. U from IHME?
 +
Cancer|0 - 0.28|DW 0.1 D 20, in addition loss of life expectancy 5 a. This comes from a lifetime exposure, so it is (linearly( assumed that 1/50 of this is caused by one-year exposure. U 100 %
 +
Vitamin D intake|0.0001 - 0.0101|DW 0.001 D 1 U 101x. 1 if not met
 +
Dioxin TDI|0.0001 - 0.0101|DW 0.001 D 1 U 101x. 1 if not met
 +
Child's IQ|-0.0517 (-0.03 - -0.0817)|Intellectual disability, mild (IQ<70): 0.031 (0.018-0.049) From IHME. D 50 U from IHME.
 +
</t2b>
 +
 
 +
: DW = disability weight
 +
: D = duration (a)
 +
: U = uncertainty
  
 
=== Analyses ===
 
=== Analyses ===
  
 
=== Indices ===
 
=== Indices ===
 +
* Country (Denmark, Estonia, Finland, Sweden)
 +
* Year (current, future)
 +
* Gender
 +
* Age: 18-45 years or >45 years
 +
* Fish species (Baltic herring, Baltic salmon)
 +
* Health end-point, specified by name
 +
* Compound: TEQ (PCDD/F and PCB), Vitamin D, Omega3 (includes EPA and DHA), MeHg
  
 
=== Calculations ===
 
=== Calculations ===
 +
This section will have the actual health benefit-risk model (schematically described in the above figure) written with R. The code will utilise all variables listed in the above Dependencies section. Model results are presented as tables and figures when those are available.
 +
 +
* 18.5.2017: Archived exposure model ''Op7748/exposure'' by Arja (used separate ovariables for salmon and herring) [http://en.opasnet.org/en-opwiki/index.php?title=Benefit-risk_assessment_of_Baltic_herring_and_salmon_intake&oldid=40413#Exposure_model]
 +
 +
==== Health impact model (Monte Carlo) ====
 +
 +
* Model run 13.3.2017: a simple copy of [[:op_fi:Silakan hyöty-riskiarvio]] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=xF8zPw3M9emJd5yY]
 +
* Model run 13.3.2017 with showLocations function [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=MJ6Wfun0aV9H85Cj]
 +
* Model run 13.3.2017 produces totcases results but are not meaningful yet [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=FqjfFcJGQ1ZUHcsy]
 +
* Model run 14.3.2017 with exposure graph [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=Rpt6e8XtmK8F4m2i]
 +
* Model run 14.3.2017 bugs not fixed [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=jCTKrJR6HQ4qXjF5]
 +
* Model run 30.5.2017 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=0jq0LB5tfp7mvvCt]
 +
* Model run 12.6.2017 with 2D Monte Carlo [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=ZwSWfkneUHIUG7Xt]
 +
* Model run 8.9.2017 with known bugs fixed [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=qkyKcACq5MYvJmN4]
 +
 +
<rcode name="hia" label="Store intermediate variables (for developers only)">
 +
# This is code Op_en7748/hia on page [[Benefit-risk assessment of Baltic herring and salmon intake]]
 +
Sys.time()
 +
library(OpasnetUtils)
 +
library(ggplot2)
 +
 +
# amount does not know where to find jsp.
 +
objects.latest("Op_en7749", code_name = "surveyjsp") # Uses jsp directly from survey data.
 +
 +
openv.setN(max(as.numeric(as.character(jsp$Iter)))) # Adjust N to data size
 +
 +
# For development and testing, use smaller ovariables
 +
openv.setN(200)
 +
jsp <- jsp[as.numeric(as.character(jsp$Iter)) <= 200 , ]
 +
 +
conc <- Ovariable(
 +
  "conc",
 +
  dependencies = data.frame(
 +
    Name = c(
 +
      "conc_pcddf", # [[EU-kalat]]
 +
      "conc_vit" # [[Concentrations of beneficial nutrients in fish]]
 +
    ),
 +
    Ident = c("Op_en3104/initiate", "Op_en1838/initiate")
 +
  ),
 +
  formula = function(...) {
 +
    colnames(conc_pcddf@output)[colnames(conc_pcddf@output)=="Compound"] <- "Exposure_agent"
 +
    conc_pcddf$Fish <- as.factor(conc_pcddf$Fish) # This is character vector for some reason.
 +
    levels(conc_vit$Exposure_agent)[levels(conc_vit$Exposure_agent) == "D_vitamin"] <- "Vitamin D"
 +
    conc_vit <- conc_vit / 100 # From /100g to /g
 +
    result(conc_vit)[conc_vit$Exposure_agent == "Vitamin D"] <- result(conc_vit)[conc_vit$Exposure_agent == "Vitamin D"] * 1000 # from mg to ug
 +
    out <- combine(conc_pcddf, conc_vit)
 +
    levels(out$Fish)[levels(out$Fish)=="Baltic herring"] <- "Herring"
 +
    result(out) <- pmax(0,result(out))
 +
    return(out)
 +
  }
 +
)
 +
conc@meta = c(conc@meta, list(units = "Vitamin D: ug/g; DHA, EPA, and omega3: mg/g; PCDD/F, PCB: pg/g f.w."))
 +
 +
#objects.latest("Op_en4004", code_name = "initiate") # [[Mercury concentrations in fish in Finland]]
 +
# ^ This code does not exist yet. Use EU-kalat as example.
 +
 +
# sumitem is needed by both expoRaw and bgexposure
 +
sumitem <- function(
 +
  ova, # ovariable that has locations to sum
 +
  cond, # index column that contains the locations to sum
 +
  condvalue, # vector of locations to sum
 +
  sumvalue # location to be given to the rows with the sums
 +
) {
 +
  d <- ova
 +
  d@output <- d@output[d@output[[cond]] %in% condvalue , ]
 +
  d <- oapply(d, cols = cond, FUN = sum)
 +
  d@output[[cond]] <- sumvalue
 +
  ova@output <- orbind(ova, d)
 +
  return(ova)
 +
}
 +
 +
# Exposure with fish-related exposure and additional exposure from other sources.
 +
# Does NOT contain infant's exposure from mother.
 +
 +
expoRaw <- Ovariable(
 +
  "expoRaw",
 +
  dependencies = data.frame(
 +
    Name = c("conc", "amount", "bgexposure", "info"),
 +
    Ident = c(NA, "Op_en7749/initiate", NA, NA)
 +
  ),
 +
  formula = function(...) {
 +
    amount <- unkeep(
 +
      amount,
 +
      sources=TRUE,
 +
      prevresults=TRUE,
 +
      cols=c(
 +
        "Eat.fish",
 +
        "How.often.fish",
 +
        "Eat.salmon",
 +
        "assumpUnit"
 +
      )
 +
    )
 +
   
 +
    # Make a summary for TEQ (Omega3 exists already)
 +
    conc <- sumitem(conc, "Exposure_agent", c("PCDDF", "PCB"), "TEQ")
 +
    levels(conc$Fish)[levels(conc$Fish) == "Baltic herring"] <- "Herring"
 +
    expoRaw <- amount * conc + bgexposure
 +
    expoRaw <- oapply(expoRaw, cols = "Fish", FUN = sum) * info
 +
   
 +
    return(expoRaw)
 +
  }
 +
)
 +
 +
## Background-exposure to vitamin D and omega-3
 +
addexposure <- Ovariable(
 +
  "addexposure",
 +
  ddata = "Op_en7748", # [[Benefit-risk assessment of Baltic herring and salmon intake]]
 +
  subset = "Background exposure"
 +
)
 +
 +
# Should the background be specific for gender and country? At the moment it is.
 +
bgexposure <- Ovariable(
 +
  "bgexposure",
 +
  dependencies = data.frame(Name="addexposure"),
 +
  formula = function(...) {
 +
    out <- addexposure
 +
    # Empty values ("") in indices must be replaced by NA so that Ops works correctly.
 +
    levels(out$Gender)[levels(out$Gender) == ""] <- NA
 +
    levels(out$Country)[levels(out$Country) == ""] <- NA
 +
    levels(out$Exposure_agent)[levels(out$Exposure_agent) == ""] <- NA
 +
    out@output <- fillna(out@output, c("Country", "Gender", "Exposure_agent"))
 +
   
 +
    out <- sumitem(out, "Exposure_agent", c("PCDDF","PCB"), "TEQ")
 +
    out <- sumitem(out, "Exposure_agent", c("EPA", "DHA"), "Omega3")
 +
    out <- unkeep(out, prevresults = TRUE, sources = TRUE)  + 1E-6
 +
   
 +
    # Make the background exposure uncertain rather than an index.
 +
    out <- CollapseMarginal(out, cols = "Background", fun = "sample")
 +
   
 +
    return(out)
 +
  }
 +
)
 +
 +
info <- Ovariable(
 +
  "info",
 +
  dependencies = data.frame(Name = c("jsp","bgexposure")),
 +
  formula = function(...) {
 +
    out <- unique(jsp@output[c("Iter","Country","Gender","Ages")])
 +
    out <- merge(out, unique(bgexposure@output[c("Iter","Background")]))
 +
    out$Result <- 1
 +
    return(out)
 +
  }
 +
)
 +
 +
info <- EvalOutput(info)
 +
 +
exposure <- Ovariable(
 +
  "exposure",
 +
  dependencies = data.frame(
 +
    Name = c(
 +
      "expoRaw",
 +
      "dx.expo.child",
 +
      "info"
 +
    ),
 +
    Ident = c(
 +
      NA,
 +
      "Op_en7797/initiate", # [[Infant's dioxin exposure]]
 +
      NA
 +
    )
 +
  ),
 +
  formula = function(...) {
 +
    expoRaw$Exposure <- NA
 +
    dx.expo.child$Exposure <- "To child"
 +
    out <- combine(expoRaw, dx.expo.child)
 +
    out <- unkeep(out, sources=TRUE, prevresults=TRUE)
 +
    return(out * info + 1E-6)
 +
  }
 +
)
 +
 +
# Limit the infant health responses to 10 % of females at age 18-45 a
 +
# (assuming 10 % probability to give birth during a year)
 +
 +
frexposed <- Ovariable(
 +
  "frexposed",
 +
  dependencies = data.frame(Name = c("jsp","exposure")),
 +
  formula = function(...) {
 +
    out <- merge(
 +
      unique(jsp@output[c("Gender", "Ages", "Country", "Iter")]),
 +
      unique(exposure@output["Exposure"])
 +
    )
 +
    out$Result <- ifelse(
 +
      out$Exposure == "To child",
 +
      ifelse(
 +
        out$Gender == "Female" & out$Ages == "18-45",
 +
        0.1, # Probability of birth during a year.
 +
        0
 +
      ),
 +
      1
 +
    )
 +
    out$Result[is.na(out$Result)] <- 1
 +
    return(Ovariable(output=out, marginal = !colnames(out) %in% "Result")) # Marginal setting does not work
 +
  }
 +
)
 +
Sys.time()
 +
frexposed <- EvalOutput(frexposed)
 +
 +
ERFchoice <- Ovariable(
 +
  "ERFchoice",
 +
  ddata = "Op_en7748", # [[Benefit-risk assessment of Baltic herring and salmon intake]]
 +
  subset = "Exposure-response functions of interest"
 +
)
 +
 +
objects.latest("Op_en2031", code_name = "initiate") # Default ERF but needs adjustment.
 +
 +
ERF <- EvalOutput(ERF)
 +
Sys.time()
 +
ERF <- ERF[ , !colnames(ERF@output) %in% c("Age","Sex","Source")]
 +
levels(ERF$Exposure)[levels(ERF$Exposure) %in% c(
 +
  "Ingestion etc. (as it was in Seveso) as log(TCDD serum concentration+1) in fat",
 +
  "Maternal intake through placenta"
 +
)] <- "To child"
 +
 +
threshold <- EvalOutput(threshold)
 +
threshold <- threshold[ , !colnames(threshold@output) %in% c("Age","Sex","Source")]
 +
levels(threshold$Exposure)[levels(threshold$Exposure) %in% c(
 +
  "Ingestion etc. (as it was in Seveso) as log(TCDD serum concentration+1) in fat",
 +
  "Maternal intake through placenta"
 +
)] <- "To child"
  
== See also ==
+
cat("Exposure-responses of interest.\n")
 +
oprint(ERFchoice@output)
 +
 
 +
# Default dose but adjustments are needed before use.
 +
objects.latest("Op_en2261", code_name = "dose")
 +
dose <- unkeep(EvalOutput(dose), sources = TRUE, prevresults = TRUE)
 +
Sys.time()
 +
######################################################### POPULATION
 +
 
 +
population <- Ovariable(
 +
  "population",
 +
  data = data.frame(
 +
    Country = rep(c("DK",  "EST", "FI",  "SWE"), each = 4),
 +
    Gender = rep(c("Male","Female"), each=2, times=2),
 +
    Ages = rep(c("18-45",">45"),4),
 +
    Result = rep(c(1200000, 250000, 1350000, 2000000), each = 4)
 +
  )
 +
)
 +
 
 +
mc2dparam<- list(
 +
  N2 = 100, # Number of iterations in the new Iter
 +
  run2d = TRUE, # Should the mc2d function be used or not?
 +
  newmarginals = c("Gender", "Ages", "Country"), # Names of columns that are non-marginals but should be sampled enough to become marginals
 +
  method = "bootstrap", # which method to use for 2D Monte Carlo? Currently bootsrap is the only option.
 +
  fun = mean # Function for aggregating the first Iter dimension.
 +
)
 +
 
 +
objects.latest("Op_en2261", code_name="RR") # Default RR but has to be adjusted before use.
 +
RR <- EvalOutput(RR)
 +
RR@marginal <- RR@marginal | colnames(RR@output) %in% mc2dparam$newmarginals
 +
 
 +
objects.latest("Op_en2261", code_name="casesabs") # Has to be adjusted before use.
 +
casesabs <- EvalOutput(casesabs)
 +
casesabs@marginal <- casesabs@marginal | colnames(casesabs@output) %in% mc2dparam$newmarginals
 +
 
 +
disabilityweight <- Ovariable(
 +
  "disabilityweight",
 +
  ddata = "Op_en7748",
 +
  subset = "DALYs of responses"
 +
)
 +
 
 +
duration <- 1
 +
 
 +
objects.latest("Op_en7422", code_name="BoD")
 +
 
 +
BoD <- EvalOutput(BoD, verbose = TRUE) # Fetches all objects
 +
 
 +
#BoDcase <- unkeep(EvalOutput(BoDcase), sources = TRUE) # Removes NA indices
 +
# To avoid double counting, these responses must be removed.
 +
#BoDcase <- BoDcase[!BoDcase$Resp %in% c("Stroke", "Heart (CHD)") , ]
 +
#
 +
#BoD <- EvalOutput(BoD) # Re-evaluate BoD without double counting
 +
 
 +
objects.latest("Op_en6007", code_name="diagnostics")
 +
Sys.time()
 +
oprint(showLoctable())
 +
oprint(showind())
 +
 
 +
rm(wiki_username)
 +
 
 +
objects.store(list=ls())
 +
cat("Ovariables", ls(), "stored.\n")
 +
Sys.time()
 +
</rcode>
 +
 
 +
==== Second part ====
 +
 
 +
* Model run 4.6.2017 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=ERtBoA0X8McFJppE]
 +
* Model run 11.6.2017 with 2D Monte Carlo [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=UltzattYWmXPSaRr]
 +
 
 +
<rcode graphics=1>
 +
# This is code Op_en7748/ on page [[Benefit-risk assessment of Baltic herring and salmon intake]]
 +
library(OpasnetUtils)
 +
library(ggplot2)
 +
 
 +
objects.latest("Op_en7748", code_name="hia") #  [[Benefit-risk assessment of Baltic herring and salmon intake]]
 +
 
 +
cat("Units:", conc@meta$units, "\n")
 +
oprint(summary(conc,fun=c("length","mean","sd")))
 +
cat("Units: g/day\n")
 +
oprint(summary(exposure, marginal=c("Exposure", "Exposure_agent", "Country","Background"), fun=c("length","mean","sd")))
 +
oprint(summary(exposure[is.na(exposure$Exposure),], marginal=c("Exposure_agent", "Country","Background"), fun=c("length","mean","sd")))
 +
oprint(summary(RR,fun=c("length","mean","sd")))
 +
oprint(summary(casesrr,fun=c("length","mean","sd")))
 +
oprint(summary(casesabs,fun=c("length","mean","sd")))
 +
oprint(summary(BoDpaf,fun=c("length","mean","sd"))[-5])
 +
oprint(summary(BoDcase,fun=c("length","mean","sd"))[-4])
 +
oprint(summary(BoD,fun=c("length","mean","sd"))[-5])
 +
 
 +
ggplot(conc@output, aes(x=concResult, colour=Exposure_agent))+stat_ecdf()+
 +
  facet_wrap(~Fish)+scale_x_log10()
 +
 
 +
ggplot(conc@output[conc$Fish %in% c("Herring", "Salmon"), ], aes(x=concResult, colour=Exposure_agent))+stat_ecdf()+
 +
  facet_wrap(~Fish)+scale_x_log10()
 +
 
 +
ggplot(amount@output, aes(x=amountResult, colour=Country))+stat_ecdf()+
 +
  facet_wrap(~Fish, scales="free")+scale_x_log10()
 +
 
 +
ggplot(exposure@output[is.na(exposure$Exposure) & result(exposure)>0.01,], aes(x = exposureResult, colour=Country))+
 +
  stat_ecdf() + scale_x_log10() + theme_gray(base_size = 18)+
 +
  facet_wrap(~ Exposure_agent, scales="free")+labs(title = "Exposure (DX: pg/d, O3: mg/d, VD: ug/d)")
 +
 
 +
ggplot(exposure@output[!is.na(exposure$Exposure) & result(exposure)>0.01,], aes(x = exposureResult, colour=Country))+
 +
  stat_ecdf() + scale_x_log10() + theme_gray(base_size = 24)+
 +
  facet_wrap(~ Exposure_agent, scales="free")+labs(title = "Exposure breast feeding (DX: log(pg/g) fat in child)")
 +
 
 +
ggplot(BoD@output, aes(x=Response, weight=BoDResult/openv$N, fill=Response))+geom_bar()+coord_flip()
 +
 
 +
ggplot(BoD@output, aes(x=BoDResult, colour=Response))+stat_ecdf()+
 +
  scale_x_log10()
 +
 
 +
ggplot(ERF@output, aes(x=ERFResult, colour=Exposure_agent))+stat_ecdf()+
 +
  facet_wrap(~ Response, scales = "free_x")
 +
 
 +
ggplot(casesabs@output, aes(x=casesabsResult, colour=Response))+stat_ecdf()+
 +
  scale_x_log10()
 +
 
 +
ggplot(casesrr@output, aes(x=casesrrResult, colour=Response))+stat_ecdf()+
 +
  scale_x_log10()
 +
 
 +
ggplot(BoDcase@output, aes(x=BoDcaseResult, colour=Response))+stat_ecdf()+
 +
  scale_x_log10()
 +
 
 +
ggplot(BoDpaf@output, aes(x=BoDpafResult, colour=Response))+stat_ecdf()+
 +
  scale_x_log10()
 +
 
 +
odag()
 +
</rcode>
 +
 
 +
=== Plot concentrations and survey ===
 +
 
 +
* Requires codes Op_en7748/bayes and indirectly Op_en7748/preprocess.
 +
* Model run 1.3.2017 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=sgkkXkgFEuvaXT9R]
 +
 
 +
<rcode label="Plot concentrations and answers" graphics=1>
 +
#This is code Op_en7748/ on page [[Benefit-risk assessment of Baltic herring and salmon intake]]
 +
 
 +
library(OpasnetUtils)
 +
library(ggplot2)
 +
library(reshape2)
 +
 
 +
objects.latest("Op_en7748", code_name = "bayes") #: pcd.pred, ans.pred, mu.pred
 +
objects.latest("Op_en3104", code_name = "preprocess") # [[EU-kalat]]: eu
 +
 
 +
pl <- melt(pcd.pred)
 +
mul <- melt(mu.pred)
 +
ql <- melt(ans.pred)
 +
 
 +
############## PCDDF concentrations plotted
 +
 
 +
ggplot(eu@output, aes(x = euResult, colour = Fish))+geom_density(size = 1) +
 +
  scale_x_log10() +
 +
  facet_wrap(~ Congener, scales = "free_y") + coord_cartesian(xlim = c(1E-3,1E2))+
 +
  labs(title = "Probability densities of PCDD/F concentrations directly from data")
 +
 
 +
ggplot(eu@output, aes(x = euResult, colour = Congener))+geom_density(size = 1) +
 +
  scale_x_log10() +
 +
  facet_wrap(~ Fish, scales = "free_y") + coord_cartesian(xlim = c(1E-3,1E2))+
 +
  labs(title = "Probability densities of PCDD/F concentrations directly from data")
 +
 
 +
ggplot(pl, aes(x = value, colour = Fish))+geom_density(size = 1) +
 +
  scale_x_log10() +
 +
  facet_wrap(~ Congener, scales = "free_y") + coord_cartesian(xlim = c(1E-3,1E2))+
 +
labs(title = "Probability densities of PCDD/F concentrations from bayes model")
 +
 
 +
ggplot(pl, aes(x = value, colour = Congener))+geom_density(size = 1) +
 +
  scale_x_log10() +
 +
  facet_wrap(~ Fish, scales = "free_y") + coord_cartesian(xlim = c(1E-3,1E2))+
 +
  labs(title = "Probability densities of PCDD/F concentrations from bayes model")
 +
 
 +
ggplot(pl[pl$Fish == "Baltic herring",], aes(x = Iter, y = value,  group = Seed, colour = Seed))+
 +
  geom_line() + scale_y_log10() +
 +
  facet_wrap(~ Congener, scales = "free_y") +
 +
  labs(title = "Mixing of model. Runs 1..1000, no thinning")
 +
 
 +
#  aggregate(pl["value"], by = pl[c("Congener", "Fish")], FUN = mean)
 +
 
 +
ggplot(pl[pl$Fish %in% c("Baltic herring", "Rainbow trout", "Pike-perch", "Pike", "Salmon", "Sprat") , ],
 +
      aes(x = value, colour = Congener))+geom_density(size = 1) + scale_x_log10() +
 +
  facet_wrap(~ Fish, scales = "free_y") + coord_cartesian(xlim = c(1E-3,1E2))+
 +
  labs(title = "Selected fish species")
 +
 
 +
########## Questionnaire plotted
 +
 
 +
for(i in unique(ql$Question)) {
 +
  print(ggplot(ql[ql$Question == i,], aes(x = value, fill = Gender))+
 +
    geom_bar(position = "dodge") +
 +
    facet_grid(Country ~ Age)+
 +
    labs(title = paste(i, "from bayes survey model")))
 +
}
 +
 
 +
##################### Mu plotted
 +
 
 +
ggplot(mul, aes(x = value, colour = Congener))+stat_ecdf(size = 1) +
 +
  scale_x_log10() +
 +
  facet_wrap(~ Fish, scales = "free_y") + #coord_cartesian(xlim = c(1E-3,1E2))+
 +
  labs(title = "Mu of PCDD/F concentrations from bayes model")
 +
 
 +
ggplot(mul[mul$Fish == "Baltic herring",], aes(x = Iter, y = value,  group = Seed, colour = Seed))+
 +
  geom_line() + scale_y_log10() +
 +
  facet_wrap(~ Congener, scales = "free_y") +
 +
  labs(title = "Mixing of model. Runs 1..1000, no thinning")
 +
 
 +
#tef <- Ovariable("tef", ddata = "Op_en4017", subset = "TEF values")
 +
#tef <- EvalOutput(tef)
  
== Keywords ==
+
#levels(eu$Congener) <- gsub("HCDD", "HxCDD", levels(eu$Congener))
 +
#levels(eu$Congener) <- gsub("HCDF", "HxCDF", levels(eu$Congener))
 +
#levels(eu$Congener) <- gsub("CoPCB", "PCB", levels(eu$Congener))
 +
#euteq <- eu * tef
 +
</rcode>
  
 
== References ==
 
== References ==
 +
<references/>
  
<references/>
+
== Keywords ==
 +
== See also ==
 +
*[http://www.livsmedelsverket.se/globalassets/rapporter/2013/2013_livsmedelsverket_21_risk_benefit_herring_salmonid_fish_ver2.pdf?id=4013 Risk and Benefit Assessment of Herring and Salmonid Fish from the Baltic Sea Area]
 +
* [http://www.livsmedelsverket.se/globalassets/rapporter/2010/2012_livsmedelsverket_7_market_basket_2010.pdf Swedish Market Basket 2010]
 +
* [http://www.livsmedelsverket.se/globalassets/matvanor-halsa-miljo/kostrad-matvanor/matvaneundersokningar/riksmaten_2010_20111.pdf?id=3588 Riksmaten 2010]
 +
* [http://www.google.fi/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.food.dtu.dk%2F~%2Fmedia%2FInstitutter%2FFoedevareinstituttet%2FPublikationer%2FPub-2015%2FRapport%2520-%2520Danskernes%2520Kostvaner%25202011-2013.ashx%3Fla%3Dda&ei=jr9mVa2xJMKgsgH2hoDABw&usg=AFQjCNHQj6ft9PB2fcs-fVz_XKGYKJF-lg&sig2=rZ-d9u4I58xUqBKg3KjuOQ&bvm=bv.93990622,d.bGg Danskernes kostvaner 2011-2013]
 +
 
 +
{{Goherr}}
  
 
== Related files ==
 
== Related files ==

Latest revision as of 13:41, 8 September 2017



Scope

This assessment is part of the WP5 work in Goherr project. Purpose is to evaluate health benefits and risks caused of eating Baltic herring and salmon in four Baltic sea countries (Denmark, Estonia, Finland and Sweden). This assessment is currently on-going.

Question

What are the current population level health benefits and risks of eating Baltic herring and salmon in Finland, Estonia, Denmark and Sweden? How would the health effects change in the future, if consumption of Baltic herring and salmon changes due to actions caused by different management scenarios of Baltic sea fish stocks?

Intended use and users

Results of this assessment are used to inform policy makers about the health impacts of fish. Further, this assessment will be combined with the results of the other Goherr WPs to produce estimates of future health impacts of Baltic fish related to different policy options. Especially, results of this assessment will be used as input in the decision support model built in Goherr WP6.

Participants

  • National institute for health and welfare (THL)
  • Goherr project group

Boundaries

  • Four baltic sea countries (Denmark, Estonia, Finland, Sweden)
  • Current situation (fish use year 2016, pollutant levels in fish year 2010)
  • Estimation for future (not year specific)

Decisions and scenarios

Management scenarios developed in Goherr WP3 frames the following boundaries to the use and consumption of Baltic herring and salmon as human food. Effect of these scenarios to the dioxin levels and the human food use will be evalauted quantitatively and feed into the health benefit-risk model to assess the health effect changes.

  • Scenario 1: “Transformation to sustainability”
    • Hazardous substances, including dioxins, are gradually flushed out and the dioxin levels in Baltic herring are below or close to the maximum allowable level.
    • Fish stocks are allowed to recover to levels, which makes maximum sustainable yield possible and increases the total catches of wild caught fish. The catches of salmon by commercial fisheries has stabilized at low level, while the share of recreational catch increases slightly.
    • The use of the Baltic herring catch for food increases. A regional proactive management plan for the use of catch has increased the capacity of the fishing fleets to fish herring for food and through product development and joint marketing, have increased consumer demand for Baltic herring.
  • Scenario 2: “Business-as-usual”
    • The commercial catches of salmon continue to decrease. The demand for top predatory species, such as salmon and cod remains high, while the demand for herring decreased further as a result of demographic changes.
    • Most of the herring catch are used for fish meal and oil production in the region.
    • The use of Baltic herring from the southern parts of the Baltic Sea where the dioxin contents are not likely to exceed the maximum allowable level, are prioritised for human consumption. In the absence of the demand in many of the Baltic Sea countries, majority of the herring intended for direct human consumption are exported to Russia.
  • Scenario 3: “Inequality”
    • The nutrient and dioxins levels continue to decrease slowly.
    • The commercial catches of salmon have decreased further as the general attitudes favour recreational fishing, which has also resulted in decreased demand.
    • The herring catches have increased slightly, but the availability of herring suitable for human consumption remains low due to both, dioxin levels that remain above the maximum allowable limit in the northern Baltic Sea and the poor capacity to fish for food.
    • The use of the catch varies between countries. In Estonia, for example, where the whole catch has been traditionally used for human consumption, there is no significant change in this respect, but in Finland, Sweden and Denmark, herring fishing is predominantly feed directed.
  • Scenario 4: “Transformation to protectionism”
    • The level of hazardous substances also increases as emission sources are not adequately addressed.
    • Commercial salmon fisheries disappears almost completely from the Baltic Sea, although restocking keeps small scale fisheries going.
    • Many of the Baltic herring stocks are also fished above the maximum sustainable yield and total catches are declining.
    • Owing to the growing dioxin levels detected in herring, majority of the catch is used for aquaculture.

Timing

  • Model development during 2016 and 2017
  • First set of results in March 2017, draft publication in March 2018

Answer

This section will be updated as soon as preliminary results are available

Results

Conclusions

Rationale

Error creating thumbnail: Unable to save thumbnail to destination
Schematic picture of the health benefit-risk model for Baltic herring and salmon intake.
Error creating thumbnail: Unable to save thumbnail to destination
Detailed modelling diagram of the health benefit-risk model. Green nodes are original data, red nodes are based on scientific literature, and blue nodes are computational nodes. Those with a number are generic nodes designed to be used in several assessments. the number refers to the page identifier in Op_en wiki (this Opasnet wiki).

Stakeholders

  • Policy makers
    • Food safety authorities
    • Fisheries management
  • Researchers
    • Food safety
    • Health
  • NGO's
    • WWF
    • Active consumers
    • Marine Stewardship Council
  • Baltic sea fishers and producers?

Dependencies

Calculation of cases of disease

Calculation of DALYs:

Background exposure(-)
ObsBackgroundCountryGenderExposure_agentResultUnitDescription
1YesFIMaleVitamin D11.7µg /dFinriski 12 - 0.3 silakasta
2YesSWEMaleVitamin D11.7µg /dFinriski 12 - 0.3 silakasta
3YesESTMaleVitamin D11.7µg /dFinriski 12 - 0.3 silakasta
4YesDKMaleVitamin D11.7µg /dFinriski 12 - 0.3 silakasta
5YesFemaleVitamin D8.5µg /dFinriski 8.7 - 0.2 silakasta
6YesMaleEPA120mg /dFinriski 125 - 4.6 silakasta
7YesFemaleEPA96mg /dFinriski 100 - 3.9 silakasta
8YesMaleDHA118mg /dFinriski 125 - 6.7 silakasta
9YesFemaleDHA94mg /dFinriski 100 - 5.4 silakasta
10YesPCDDF0pg /d (TEQ)
11YesPCB0pg /d (TEQ)
12YesMeHg0µg /d
13YeslogTEQ0log(pg /g)
14No0
Exposure-response functions of interest(-)
ObsExposure_agentRespResponseER_functionScalingDummy
1TEQTooth defectYes or no dental defectERSNone1
2TEQCancerCancer morbidityCSFBW1
3TEQDioxin TDIDioxin recommendation tolerable daily intakeTDIBW1
4DHAChild's IQLoss in child's IQ pointsERSNone1
5Omega3Heart (CHD)CHD2 mortalityRelative HillNone1
6Omega3StrokeStroke mortalityRelative HillNone1
7Vitamin DVitamin D intakeVitamin D recommendationStepNone1
8MeHgChild's IQLoss in child's IQ pointsERSBW1
DALYs of responses(DALY /case)
ObsRespDALYDescription
1Heart (CHD)5 - 15Assumes DW 1 and D 10 U 50%
2Stroke5 - 15Assumes DW 1 and D 10 U 50 %
3Tooth defect0 - 0.12DW 0.001 D 60 U 100 %. Or should we use this: Developmental defect: caries or missing tooth, 0.008 (0.003 - 0.017), Periodontitis weight from IHME. D: 1. U from IHME?
4Cancer0 - 0.28DW 0.1 D 20, in addition loss of life expectancy 5 a. This comes from a lifetime exposure, so it is (linearly( assumed that 1/50 of this is caused by one-year exposure. U 100 %
5Vitamin D intake0.0001 - 0.0101DW 0.001 D 1 U 101x. 1 if not met
6Dioxin TDI0.0001 - 0.0101DW 0.001 D 1 U 101x. 1 if not met
7Child's IQ-0.0517 (-0.03 - -0.0817)Intellectual disability, mild (IQ<70): 0.031 (0.018-0.049) From IHME. D 50 U from IHME.
DW = disability weight
D = duration (a)
U = uncertainty

Analyses

Indices

  • Country (Denmark, Estonia, Finland, Sweden)
  • Year (current, future)
  • Gender
  • Age: 18-45 years or >45 years
  • Fish species (Baltic herring, Baltic salmon)
  • Health end-point, specified by name
  • Compound: TEQ (PCDD/F and PCB), Vitamin D, Omega3 (includes EPA and DHA), MeHg

Calculations

This section will have the actual health benefit-risk model (schematically described in the above figure) written with R. The code will utilise all variables listed in the above Dependencies section. Model results are presented as tables and figures when those are available.

  • 18.5.2017: Archived exposure model Op7748/exposure by Arja (used separate ovariables for salmon and herring) [1]

Health impact model (Monte Carlo)

  • Model run 13.3.2017: a simple copy of op_fi:Silakan hyöty-riskiarvio [2]
  • Model run 13.3.2017 with showLocations function [3]
  • Model run 13.3.2017 produces totcases results but are not meaningful yet [4]
  • Model run 14.3.2017 with exposure graph [5]
  • Model run 14.3.2017 bugs not fixed [6]
  • Model run 30.5.2017 [7]
  • Model run 12.6.2017 with 2D Monte Carlo [8]
  • Model run 8.9.2017 with known bugs fixed [9]

+ Show code

Second part

  • Model run 4.6.2017 [10]
  • Model run 11.6.2017 with 2D Monte Carlo [11]

+ Show code

Plot concentrations and survey

  • Requires codes Op_en7748/bayes and indirectly Op_en7748/preprocess.
  • Model run 1.3.2017 [12]

+ Show code

References


Keywords

See also

Goherr Research project 2015-2018: Integrated governance of Baltic herring and salmon stocks involving stakeholders
Error creating thumbnail: Unable to save thumbnail to destination
Goherr public website

Workpackages including task description and follow-up:
WP1 Management · WP2 Sociocultural use, value and goverrnance of Baltic salmon and herring · WP3 Scenarios and management objectives · WP4 Linking fish physiology to food production and bioaccumulation of dioxin · WP5 Linking the health of the Baltic Sea with health of humans: Dioxin · WP6 Building a decision support model for integrated governance · WP7 Dissemination

Other relevant pages in Opasnet: GOHERR assessment · Relevant literature

Relevant data: Exposure response functions of dioxins · Fish consumption in Sweden · POP concentrations in Baltic sea fish · Exposure response functions of Omega3 fatty acids

Relevant methods: Health impact assessment · OpasnetBaseUtils‎ · Modelling in Opasnet

Relevant assessments: Benefit-risk assessment of Baltic herring · Benefit-risk assessment on farmed salmon · Benefit-risk assessment of methyl mercury and omega-3 fatty acids in fish · Benefit-risk assessment of fish consumption for Beneris · Benefit-risk assessment of Baltic herring (in Finnish)

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

http://www.bonusportal.org/ http://www.bonusprojects.org/bonusprojects

Related files